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Abstract
Many previous studies observed that higher retrospective confidence ratings about mem-
ory performance were associated with shorter response times in memory test. Research-
ers often interpret response time as a measure of retrieval fluency which is an important 
cue utilized in confidence formation process. However, the drift diffusion model (DDM) 
indicates that response time in recognition memory test includes both a decision compo-
nent representing memory retrieval, and a non-decision component unrelated to retrieval 
process. Few previous studies have investigated whether retrospective confidence in rec-
ognition test is related to the speed of both retrieval and non-decision processes. To ad-
dress this question, the current study first analyzed data from six published experiments, 
and found that higher retrospective confidence ratings were associated with both higher 
drift rate (indicating retrieval fluency) and shorter non-decision time in DDM. Then we 
manipulated the ease of perception in two new experiments, and the results consistently 
indicated that difficulty in stimulus perception increased non-decision time in recognition 
test, which affected retrospective confidence. Furthermore, the documented results also 
suggest drift rate could partly account for the positive relationship between confidence and 
memory performance, while the reliance of confidence on non-decision time negatively 
affected confidence accuracy.
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Metamemory refers to the processes of monitoring and controlling memory activities 
(Nelson & Narens, 1990). People rely on the results of metamemory monitoring to guide 
their learning activities, such as how to allocate subsequent study time and select items for 
restudy (Metcalfe & Finn, 2008; Metcalfe & Kornell, 2005; Robey et al., 2017), and thus 
metamemory monitoring plays a critical role in memory process. Metamemory judgments 
can be made either prospectively or retrospectively: people can prospectively predict their 
performance in a future memory test, or retrospectively rate confidence about memory per-
formance in a test they have just finished (Nelson & Narens, 1990). Retrospective confi-
dence rating is an important type of metamemory judgment, and can reliably affect people’s 
learning strategy in future study (Robey et al., 2017, 2021).

According to the cue-utilization theory for metamemory, metamemory judgments are 
inferential in nature and depend on various types of information (or cues) obtained from 
memory process (Koriat, 1997; Koriat et al., 2008). Researchers believe that one important 
cue that retrospective confidence ratings rely on is the fluency of memory retrieval, and 
previous studies often interpreted response time in memory test as an index of retrieval 
fluency (e.g., Koriat et al., 2008; Koriat & Ackerman, 2010). But in fact, response time 
in memory test is complicated and may not solely reflect retrieval fluency. For example, 
the drift diffusion model (DDM), which is a widely accepted computational model about 
decision making, suggests that response process in recognition memory test includes both 
a decision component based on memory retrieval, and a non-decision component which is 
unrelated to retrieval process. The response time in recognition test is the sum of the time for 
decision and non-decision components (Ratcliff & McKoon, 2008). However, few studies 
have investigated whether retrospective confidence ratings in recognition test are affected 
by the speed of both retrieval and non-decision processes.

Below, we briefly summarize empirical findings about the relationship between retro-
spective confidence ratings and response times in memory test, and then discuss the decom-
position of response time based on DDM. Finally, we introduce the rationale of the current 
study.

Relationship between retrospective confidence ratings and response 
times

The cue-utilization theory suggests that one important cue that retrospective confidence 
ratings depend on is retrieval fluency, which refers to the subjective ease or difficulty with 
which an answer is retrieved from memory (Koriat, 1997; Koriat et al., 2008). It is assumed 
that retrospective confidence should rely on internal feedback that participants gain from 
attempting to select or retrieve an answer in memory test, and retrieval fluency is such an 
important feedback from memory process (Koriat & Ackerman, 2010).

Researchers often use response time in memory test as an index of retrieval fluency, and 
believe that people need longer time to respond when it is more difficult to retrieve an answer 
from memory (Koriat et al., 2008). Previous studies consistently documented a negative 
correlation between retrospective confidence ratings and response times in various types of 
memory tests: participants gave higher confidence ratings about memory performance when 
their response time was shorter in the test (Dougherty et al., 2005; Kelley & Lindsay, 1993; 
Koriat & Ackerman, 2010; Nelson & Narens, 1990; Robinson et al., 1997; Siedlecka et al., 
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2019; Weidemann & Kahana, 2016). For example, Siedlecka et al., (2019) asked participants 
to first learn a list of words and then performed an Old/New or 2-alternative-forced-choice 
(2AFC) recognition test. Their results revealed that shorter response time in recognition test 
was associated with higher retrospective confidence ratings. Nelson & Narens (1990) also 
demonstrated a negative correlation between retrospective confidence and response time in 
a recall test for both correctly answered trials and trials with commission errors (i.e., provid-
ing incorrect answers). Furthermore, Kelley & Lindsay (1993) indicated that prior exposure 
to either correct or incorrect answers before recall test changed both response times and 
confidence ratings, but did not alter the negative relationship between these two variables, 
suggesting a stable effect of response time on retrospective confidence.

On the other hand, researchers found that response time in memory test could also nega-
tively predict actual memory performance (Anderson, 1981; Koriat & Ackerman, 2010; 
Nelson & Narens, 1990; Robinson et al., 1997; Siedlecka et al., 2019). Thus, the reliance 
of retrospective confidence ratings on response time should strengthen the relationship 
between confidence and actual memory performance (i.e., increase confidence accuracy 
or resolution; Vuorre & Metcalfe 2021). To test this possibility, Koriat & Ackerman (2010) 
examined the correlation between retrospective confidence and memory performance both 
before and after partialling out the effect of response time. Results indicated that the cor-
relation was reduced significantly when the effect of response time was partialled out, sug-
gesting that the accuracy of retrospective confidence ratings was partly accounted for by the 
use of response time as a cue for making confidence ratings. In addition, Robinson et al., 
(1997) found higher accuracy of retrospective confidence in recall than in recognition test, 
and the difference in the correlation between confidence and response time across recall and 
recognition tests could mediate the effect of test format on confidence accuracy.

Decomposition of response time

Although response time in memory test is often interpreted as a measure of retrieval flu-
ency in previous studies, using the total response time to represent the fluency of memory 
retrieval may be a simplified assumption. For example, in order to choose an answer in rec-
ognition memory test, participants need to first encode sensory input to perceive the content 
of the stimulus, then try to retrieve the current stimulus from memory, and finally press a 
key to indicate their answer. The response time reflects the total amount of time required for 
pre-retrieval (perception), retrieval and post-retrieval (response execution) processes, rather 
than only the retrieval process itself (Ratcliff & McKoon, 2008). Thus, response time in 
recognition test is not a pure measure of retrieval fluency.

In fact, theoretical models about response time, such as the drift diffusion model (DDM), 
suggest that response time in memory test is complicated and can be broken down into 
different parts. DDM is a computational model that can explain how people make deci-
sions in two-choice tasks, and has been widely applied in various types of tasks including 
recognition memory test (for a review, see Ratcliff et al., 2016). It assumes response time in 
recognition test contains (1) a decision component during which memory evidence accumu-
lates in retrieval process, and (2) a non-decision component which is unrelated to memory 
retrieval (Ratcliff & McKoon, 2008).

653



X. Hu et al.

1 3

According to DDM, decisions in a recognition test are made by a noisy process accu-
mulating memory evidence over time from a starting point toward one of two boundaries 
(Ratcliff & McKoon, 2008). A choice is made when accumulated evidence exceeds one 
threshold. Researchers often assume the upper boundary represents correct response and 
the lower one represents incorrect response (e.g., Nunez et al., 2017; Ratcliff & McKoon, 
2008; Yoon et al., 2021). The evidence accumulation process does not always terminate at 
the same time and the same boundary due to within-trial noise (see Fig. 1). The mean speed 
of evidence accumulation, termed as drift rate, is higher than zero when memory evidence 
generally accumulates toward correct response. Furthermore, DDM suggests that besides 
evidence accumulation during memory retrieval (i.e., the decision component), there is 
also a non-decision component in the choice-making process during recognition test, which 
includes stimulus perception process, response execution process (e.g., pressing a key in 
recognition test), and so on. Response time is the sum of the time for decision and non-
decision components. Thus, instead of using the total response time as a measure of retrieval 
fluency, it should be better to dissociate the retrieval and non-decision process based on 
DDM. In the current study, we aimed to examine whether retrospective confidence ratings 
are related to the speed of both retrieval and non-decision process during recognition test.

There are four main parameters in DDM: drift rate v, boundary separation a, starting 
point z, and non-decision time Ter. The parameters v, a and z affect the time needed for 
memory evidence accumulation during retrieval, and Ter indicates the time for cognitive 
process other than retrieval. In DDM, three of the four parameters (v, z and Ter) are allowed 
to vary across trials (Ratcliff & McKoon, 2008). However, when modeling correct vs. incor-
rect responses, researchers often fix the value of starting point to a/2 (i.e., the midpoint), 
assuming there is no bias toward either correct or incorrect choice (Nunez et al., 2017; Voss 

Fig. 1 Illustration of drift diffusion model. The parameter v represents drift rate, a represents boundary sepa-
ration, z represents starting point, and Ter represents non-decision time
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et al., 2015). Thus, the two main parameters that may affect the trial-by-trial variation of the 
speed of retrieval and non-decision process are v and Ter, respectively.

In DDM, drift rate v directly reflects retrieval fluency: when the retrieval of informa-
tion from memory storage is faster, the speed at which memory evidence accumulates and 
reaches decision boundary should also be higher (Ratcliff, 1978). Compared with total 
response time in recognition test, drift rate should be a better index of retrieval fluency. 
However, few studies have examined whether drift rate across trials could predict retro-
spective confidence ratings in recognition test. If retrospective confidence relies on retrieval 
fluency, as previous studies suggested (Koriat et al., 2008; Koriat & Ackerman, 2010), there 
should be a positive relationship between confidence ratings and drift rate across trials.

On the other hand, to our knowledge, no study has investigated the relationship between 
retrospective confidence ratings in recognition test and the time for non-decision process 
Ter. One possibility is that people can accurately detect the fluency of retrieval process from 
the total response time, and base their confidence ratings solely on retrieval fluency. If this 
is true, then confidence should not be affected by non-decision time. However, it is also 
possible that the speed of cognitive process other than retrieval may affect confidence. For 
example, the speed of stimulus perception, which is part of the non-decision process dur-
ing recognition test (Ratcliff & McKoon, 2008), may influence people’s evaluation about 
memory performance (Wang et al., 2020; Yang et al., 2018). The ease of perceiving a stimu-
lus may lead to a subjective feeling of knowing the answer, which then affects retrospective 
confidence ratings (Yang et al., 2021).

In addition, higher drift rate results in both higher response accuracy and shorter response 
time in recognition test, because memory evidence tends to accumulate more accurately 
and quickly toward the boundary representing correct response. On the other hand, non-
decision time only affects the total amount of response time without influencing memory 
performance, because performance in recognition test is only determined by the threshold 
(correct or incorrect) that the accumulated memory evidence finally exceeds during retrieval 
process, and is unrelated to non-decision process (Ratcliff & McKoon, 2008; Voss et al., 
2004). Thus, basing retrospective confidence on drift rate (i.e., retrieval fluency) should 
lead to reliable relationship between confidence and memory performance, and increase the 
accuracy of confidence ratings. In contrast, it is possible that utilizing non-decision time as 
a cue during confidence rating process might cause metamemory illusion, leading to the fact 
that retrospective confidence does not appropriately reflect actual performance in recogni-
tion test.

The current study

The main aim of the current study was to first dissociate retrieval and non-decision process 
in recognition test based on DDM, and then investigate whether retrospective confidence 
ratings in recognition test are related to drift rate (retrieval fluency), non-decision time, or 
both. Based on previous studies (Koriat et al., 2008; Koriat & Ackerman, 2010; Ratcliff, 
1978), we expected to observe a positive relationship between retrospective confidence and 
drift rate v. We also explored the relationship between confidence and non-decision time Ter.

In the current study, we first fit DDM to data from recognition tests in six published 
experiments, and analyzed the relationship between retrospective confidence ratings and 
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parameters Ter and v across trials. To foreshadow, our results revealed that both drift rate 
and non-decision time could significantly predict trial-by-trial confidence ratings. We then 
conducted two experiments (1a and 1b) to further investigate the relationship between non-
decision time and confidence. In Experiments 1a and 1b, the ease of perceiving the stimuli 
was manipulated to directly affect non-decision time in recognition test. We planned to rep-
licate the effect of both drift rate and non-decision time on retrospective confidence ratings, 
and further examine whether the change of non-decision time mediated the effect of the ease 
of perception on confidence.

Analyzing data from previous studies

Method

Experiments

In order to examine the relationship between retrospective confidence ratings and the 
parameters Ter and v in DDM, we analyzed data from six experiments in five published stud-
ies (Hu et al., 2017; Kantner & Lindsay, 2014; Sadeghi et al., 2017; Schmidt et al., 2019; 
Siedlecka et al., 2019). The data were extracted from the Confidence Database, which is a 
large database containing data of task performance and confidence ratings from published 
and unpublished studies (for details, see Rahnev et al., 2020). In each experiment, partici-
pants were asked to learn one or several word lists, and then perform either an Old/New or 
2AFC recogntion test.1 After making a choice in each trial during the test, participants rated 
confidence regarding the correctness of their answer. In addition, there are two experimental 
conditions (before and after meditative training) in Schmidt et al., (2019). Here we only 
analyzed data from the baseline condition (pre-training condition), which is consistent with 
the other five experiments.

Data analysis

Data preparation. We excluded all of the trials with missing data (e.g., trials for which 
participants failed to make a recognition choice or confidence rating during the required 
time window). Trials with response time that was shorter than 100 ms or differed by more 
than 3 standard deviations from the mean were also excluded (Rahnev et al., 2020; Whelan, 
2008). Furthermore, confidence ratings were given on a 6-point scale in three of the six 
experiments (Hu et al., 2017; Sadeghi et al., 2017; Schmidt et al., 2019), and on a 3-point or 
4-point scale in the other experiments (Kantner & Lindsay, 2014; Siedlecka et al., 2019). To 
directly compare the results from different experiments, all confidence ratings were trans-
formed into values on a 6-point scale using the following equation:

1  In the Confidence Database, there are also experiments with study materials other than single words (e.g., 
word pairs or pictures). However, fitting the Bayesian model to data in each experiment was computationally 
expensive (see below). Here we only analyzed the experiments asking participants to learn single words, 
which are one of the most commonly used materials in recognition test and also used in the two experiments 
of the current study.
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conftrans = 1 +

(conf − minconf) (6 − 1)
maxconf − minconf

In the equation above, conf is the original confidence rating, and conftrans is the transformed 
confidence rating on a 6-point scale. The maxconf and minconf are the maximum and minimum 
value of the original confidence scale, respectively. This transformation was implemented to 
ensure that the range of confidence ratings (1–6) was the same for all experiments.2

Relationships among response time, performance and confidence. Next, we built 
multilevel logistic regression models (level 1: trial; level 2: participant) to use response time 
in each trial to predict performance in recognition test (1 = correct, 0 = incorrect) separately 
for each experiment. We also built multilevel linear models separately for each experiment 
to (1) regress confidence on response time, (2) regress confidence on performance, and (3) 
regress confidence on both response time and performance.

In multilevel regression models, the effect of predictor variables on outcome variable 
can be divided into within-participant and between-participant effect: the within-participant 
effect refers to whether predictor variables can predict outcome variable across trials within 
each participant, and the between-participant effect refers to whether the mean of predic-
tor variables for each participant can predict the mean of outcome variable at group level 
(Enders & Tofighi, 2007; Zhang et al., 2009). In the current study, we only concerned the 
relationship between variables across trials within each participant. Here we used the isolate 
function from the bmlm package in R to extract the between-participant component centered 
at the grand mean, and the within-participant component centered at the participant mean, 
for each predictor variable (Vuorre & Bolger, 2018). We added both between-participant 
and within-participant components into the multilevel regression models, and only focused 
on the effect of within-participant components.

All multilevel logistic and linear regression analyses were performed in SPSS. We added 
random intercept and random slope for the within-participant component of each predictor 
variable in the models. In addition, we set the covariance structure for the random effects 
as diagonal to remove the correlation between random effects, which often made the model 
fail to converge (Singmann & Kellen, 2020). After performing the analyses for each experi-
ment, we built 3-level logistic and linear models (level 1: trial; level 2: participant; level 3: 
experiment) to examine the overall effects across six experiments. We computed partial eta 
squared (ηp

2) to estimate the effect size in multilevel regression models (see also Hu et al., 
2019).

Fitting DDM to data. We fit DDM to data of response time and performance in rec-
ognition test with the Wiener module (Wabersich & Vandekerckhove, 2014) for the JAGS 
modeling software (Plummer, 2003), using R2jags package in R as interface (Su & Yajima, 
2021). In general, there are two methods to examine the relationship between confidence 
ratings and the parameters Ter and v in DDM across trials. The first method is to build 
a hierarchical Bayesian DDM model which combines DDM and multilevel linear regres-
sion in one model (e.g., Nunez et al., 2017). Hierarchical Bayesian model can consider the 
uncertainty about estimation of DDM parameters when analyzing the relationship between 

2  The transformation of confidence scale implemented here was based on a simplified assumption that par-
ticipants considered the intervals between neighboring scale points were equal across the whole scale. Some 
studies provided evidence against this assumption (Hanczakowski, Zawadzka, et al., 2013; Zawadzka & 
Higham, 2015), which might be considered in future studies.
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DDM parameters and confidence ratings using multilevel regression. However, during 
model development, we found that in order to make the hierarchical Bayesian DDM model 
converge, DDM parameters must be regressed on confidence ratings rather than vice versa 
(as in Nunez et al., 2017). This limitation led to two problems: (1) using DDM parameters 
as outcome variable and confidence rating as predictor variable (rather than the other way 
round) deviated from the main aim of the current study (investigating whether Ter and v 
could predict retrospective confidence), and (2) only one parameter (Ter or v) could be used 
as outcome variable at a time, preventing us from simultaneously estimating the effect of 
Ter and v on confidence.

The second method is to fit DDM to data separately for each participant, and estimate the 
posterior distribution of Ter and v in each trial. Then we could use the posterior mean of Ter 
and v in each trial as predictor variables to predict confidence ratings in another multilevel 
linear model. Although simply extracting the posterior mean of DDM parameters ignores 
the uncertainty in parameter estimation, it allows us to build a multilevel linear model in 
which confidence rating is the outcome variable and both Ter and v are predictor variables. 
In the main text, we report the results based on the second method. Results from hierarchi-
cal Bayesian DDM model (the first method) are reported in Section S1 of the Supplemental 
Materials.

According to Wabersich & Vandekerckhove (2014), response time for incorrect trials 
in recognition test was flipped to be negative. The response time for the ith trial within a 
participant is then distributed as:

 RTi ∼ WFPT (a, Ter(i), β, νi)

WFPT refers to Wiener First Passage Time distribution, which characterizes the distribution 
of response time predicted by DDM (Ratcliff, 1978). The parameter a is boundary separa-
tion, Ter is non-decision time, and v is drift rate. The parameter β = z/a is the relative starting 
point, with β = 0.5 indicating no bias. Here we set β as 0.5 (Nunez et al., 2017; Voss et al., 
2015).

In the current model, drift rate v and non-decision time Ter are allowed to vary across 
trials within each participant. As in previous studies, the drift rate in each trial is distributed 
as a normal distribution (Ratcliff et al., 2004; Ratcliff & Tuerlinckx, 2002). To weaken the 
dependence between samples from posterior distribution and make the model converge bet-
ter, we used parameter expansion technique which augments the original model by a redun-
dant multiplicative parameter, introducing an additional random component in the sampling 
process (Lee & Wagenmakers, 2013):

 vi = µv + ξv • δv(i)

 δv(i) ∼ Normal(0, σδν
2)

 σv = |ξv| • σδv

The parameter µv is the mean of drift rate across trials for a participant, and σv is the standard 
deviation of drift rate. δv represents the variation of drift rate across trials characterized by a 
standard deviation parameter σδv. ξv is the redundant multiplicative parameter.
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In previous studies, non-decision time across trials is often assumed to be distributed as a 
uniform distribution (Ratcliff et al., 2004; Ratcliff & Tuerlinckx, 2002; Wiecki et al., 2013). 
However, during model development, we found that assuming non-decision time comes 
from a normal distribution could make the model converge better. According to Ratcliff 
(2013; 2004), using a uniform or normal distribution for non-decision time in DDM should 
have little effect on model predictions. Similar to drift rate, we also implemented parameter 
expansion technique for non-decision time:

 Ter(i) = µT + ξT • δT (i)

 δT (i) ∼ Normal(0, σδT
2)

 σT = |ξT | • σδT

µT is the mean of non-decision time across trials for a participant, and σT is the standard 
deviation of non-decision time. δT represents the variation of non-decision time across tri-
als characterized by a standard deviation parameter σδT. ξT is the redundant multiplicative 
parameter.

We used Markov chain Monte Carlo (MCMC) method implemented in JAGS to sample 
from posterior distributions of parameters (see Section S2 in the Supplemental Materials 
for the prior distribution of the parameters). We fit the model separately for each participant 
with 4 chains and each chain contained 50,000 samples. The first 25,000 samples in each 
chain were discarded as burn-in and the thin interval was set as 10, resulting in 10,000 
stored samples in total. Gelman and Rubin’s potential scale reduction factor R̂ was calcu-
lated for all parameters, and R̂ value lower than 1.1 indicates good convergence (Gelman 
& Rubin, 1992). For the participants with R̂ value higher than 1.1, we refit the model with 
longer chains and added additional redundant parameters to make sure the estimation of all 
parameters was converged (see Section S2 in Supplemental Materials for details).

Using drift rate and non-decision time to predict confidence. After fitting DDM to 
data from each participant, we extracted the posterior mean of drift rate v and non-decision 
time Ter for each trial. Then we built a 2-level linear model separately for each experi-
ment, in which retrospective confidence ratings were regressed on both v and Ter. Similar 
to the multilevel regression analyses described above, here we only focused on the effect of 
within-participant component for each predictor variable. We added random intercept and 
random slope for the within-participant components, and set the covariance structure for the 
random effects as diagonal. After performing the analyses for each experiment, we built a 
3-level linear model to examine the overall effects across six experiments.

Effects of drift rate and non-decision time on confidence accuracy. In DDM, drift rate 
v directly affects memory performance in recognition test, while non-decision time Ter is 
only related to total response time but not performance (Ratcliff & McKoon, 2008). Thus, 
basing retrospective confidence on drift rate should make confidence a good predictor of 
actual memory performance, and increase confidence accuracy. In contrast, the reliance of 
confidence on non-decision time might lead to inaccurate confidence ratings. To test this 
possibility, we performed an analysis similar to that in Koriat & Ackerman (2010). For 
each participant, we first computed Kendall’s τb correlation between confidence ratings and 
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memory performance as a measure of confidence accuracy.3 Then we separately computed 
semi-partial (part) Kendall’s τb correlation between confidence and performance when the 
effect of drift rate v on confidence was partialled out, or when the effect of non-decision 
time Ter on confidence was partialled out. The semi-partial Kendall’s τb correlation was 
computed using the ppcor package in R (Kim, 2015). For each experiment, we performed 
two paired-sample t tests to compare the zero-order Kendall’s τb correlation and each of the 
two semi-partial correlation coefficients. If the zero-order correlation between confidence 
and performance was significantly higher than the semi-partial correlation when the effect 
of v or Ter on confidence was partialled out, we could conclude that the reliance of confi-
dence on v or Ter increased confidence accuracy. In contrast, if the semi-partial correlation 
was higher, then basing confidence on v or Ter should negatively affect confidence accuracy.

Results

Relationships among response time, performance and confidence

In all of the six experiments, higher recognition memory performance was associated 
with shorter response time in recognition test across trials, bs < -0.22, ts > 6.37, ps < 0.001, 
ηp

2 > 0.63 (see Table 1). Furthermore, retrospective confidence ratings were higher when 
response time was shorter, bs < -0.38, ts > 8.23, ps < 0.001, ηp

2 > 0.67, or when memory per-
formance was higher, bs > 0.40, ts > 7.98, ps < 0.001, ηp

2 > 0.68 (see Table 2). When regress-
ing confidence ratings on response time and memory performance at the same time, we 
found that both response time and performance could significantly predict confidence, 

3  Although many previous studies on metamemory use Gamma correlation to measure confidence accuracy 
(for a review, see Masson & Rotello 2009), there are some studies using Kendall’s τb (Dougherty et al., 2018; 
Robey et al., 2017). Here we use Kendall’s τb as the measure of confidence accuracy because it is easy to 
compute semi-partial Kendall’s τb correlation.

Experiments Perfor-
mance on 
response 
time
b 95% CI ηp

2

Hu et al., 2017 -0.27 [-0.35, -0.19] 0.65
Kantner & Lindsay 2014, Ex-
periment 2

-0.59 [-0.68, -0.49] 0.72

Sadeghi et al., 2017 -0.22 [-0.27, -0.17] 0.64
Schmidt et al., 2019 -0.32 [-0.40, -0.24] 0.72
Siedlecka et al., 2019, Experi-
ment 1

-1.02 [-1.25, -0.80] 0.90

Siedlecka et al., 2019, Experi-
ment 2

-0.93 [-1.23, -0.63] 0.64

Overall effect -0.53 [-0.87, -0.19] 0.76

Table 1 Within-participant 
fixed effects for the regression 
of performance on response 
time in the six published 
experiments

Note. CI = confidence interval
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bresponse time < -0.36, ts > 7.74, ps < 0.001, ηp
2 > 0.63; bperformance > 0.29, ts > 7.02, ps < 0.001, 

ηp
2 > 0.54 (see Table 3). Results regarding the overall effects across six experiments were 

consistent with those in each experiment, ts > 4.02, ps < 0.05, ηp
2 > 0.75 (see Tables 1, 2 and 

3).

Effects of drift rate and non-decision time on confidence

When regressing retrospective confidence ratings on both drift rate v and non-decision time 
Ter across trials, we found that higher confidence was associated with higher drift rate in 
all of the six experiments, bs > 0.46, ts > 5.23, ps < 0.001, ηp

2 > 0.54. Confidence ratings also 
tended to be higher when non-decision time was shorter. However, the effect of non-decision 
time on confidence was only statistically detectable in four experiments, bs < -2.34, ts > 3.03, 

Table 2 Within-participant fixed effects for the regression of confidence separately on response time and 
performance in the six published experiments
Experiments Confi-

dence on 
response 
time

Confidence on 
performance

b 95% CI ηp
2 b 95% CI ηp

2

Hu et al., 2017 -0.45 [-0.53, -0.37] 0.79 1.29 [1.07, 1.51] 0.80
Kantner & Lindsay 2014, 
Experiment 2

-0.74 [-0.87, -0.61] 0.68 1.10 [0.97, 1.24] 0.82

Sadeghi et al., 2017 -0.38 [-0.44, -0.32] 0.79 0.41 [0.32, 0.49] 0.69
Schmidt et al., 2019 -0.49 [-0.62, -0.37] 0.74 1.44 [1.20, 1.67] 0.86
Siedlecka et al., 2019, Experi-
ment 1

-1.01 [-1.19, -0.83] 0.89 1.63 [1.20, 2.06] 0.79

Siedlecka et al., 2019, Experi-
ment 2

-1.30 [-1.61, -0.99] 0.78 0.98 [0.78, 1.18] 0.81

Overall effect -0.71 [-1.07, -0.36] 0.85 1.12 [0.69, 1.55] 0.90
Note. CI = confidence interval

Table 3 Within-participant fixed effects for the regression of confidence on both response time and perfor-
mance in the six published experiments
Experiments Re-

sponse 
time

Performance

b 95% CI ηp
2 b 95% CI ηp

2

Hu et al., 2017 -0.40 [-0.48, -0.33] 0.79 1.00 [0.81, 1.19] 0.77
Kantner & Lindsay 2014, Experi-
ment 2

-0.64 [-0.76, -0.52] 0.64 0.83 [0.72, 0.94] 0.78

Sadeghi et al., 2017 -0.37 [-0.43, -0.30] 0.78 0.29 [0.22, 0.37] 0.55
Schmidt et al., 2019 -0.41 [-0.52, -0.30] 0.71 1.15 [0.95, 1.36] 0.83
Siedlecka et al., 2019, Experi-
ment 1

-0.87 [-1.03, -0.72] 0.90 1.08 [0.75, 1.40] 0.76

Siedlecka et al., 2019, Experi-
ment 2

-1.16 [-1.46, -0.86] 0.76 0.78 [0.60, 0.97] 0.78

Overall effect -0.63 [-0.94, -0.32] 0.86 0.84 [0.52, 1.16] 0.90
Note. CI = confidence interval
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ps < 0.02, ηp
2 > 0.44, but did not reach statistical significance in the other two experiments, 

bs > -2.41, ts < 1.98, ps > 0.07, ηp
2 < 0.29 (see Table 4). To further investigate the overall 

effect of drift rate and non-decision time on confidence in the six experiments, we then 
conducted 3-level linear regression analysis on data across experiments. Results revealed 
that drift rate could positively predict confidence, b = 1.91, t = 4.73, p = .005, ηp

2 = 0.82. More 
importantly, there was an overall negative effect of non-decision time on confidence, b = 
-3.71, t = 3.70, p = .014, ηp

2 = 0.74 (see Table 4).

Effects of drift rate and non-decision time on confidence accuracy

Finally, we investigated whether the reliance of retrospective confidence ratings on drift 
rate and non-decision time influenced confidence accuracy. In all of the six experiments, 

Table 4 Within-participant fixed effects for the regression of confidence on both drift rate and non-decision 
time in the six published experiments
Experiments Drift 

rate 
v

Non-
decision 
time Ter

b 95% CI ηp
2 b 95% CI ηp

2

Hu et al., 2017 3.70 [2.40, 5.00] 0.55 -2.34 [-4.18, -0.51] 0.57
Kantner & Lindsay 2014, Experiment 2 1.23 [0.97, 1.49] 0.65 -6.72 [-10.21, 

-3.23]
0.45

Sadeghi et al., 2017 0.46 [0.35, 0.57] 0.75 -15.07 [-21.21, 
-8.92]

0.77

Schmidt et al., 2019 3.48 [2.09, 4.88] 0.60 -2.41 [-5.13, 0.32] 0.28
Siedlecka et al., 2019, Experiment 1 1.95 [1.18, 2.72] 0.85 -0.20 [-2.49, 2.09] 0.01
Siedlecka et al., 2019, Experiment 2 1.28 [0.88, 1.68] 0.86 -2.48 [-4.08, -0.87] 0.77
Overall effect 1.91 [0.88, 2.94] 0.82 -3.71 [-6.30, -1.12] 0.74
Note. CI = confidence interval

Table 5 Kendall’s τb correlation between confidence and performance in the six published experiments
Experiments Zero-order Semi-

partial 
(partialling 
out v)

Semi-
partial 
(partialling 
out Ter)

Mτb 95% CI Mτb 95% CI Mτb 95% CI
Hu et al., 2017 0.27 [0.24, 0.30] 0.09 [0.07, 

0.12]
0.29 [0.26, 

0.32]
Kantner & Lindsay 2014, 
Experiment 2

0.25 [0.22, 0.27] 0.10 [0.08, 
0.12]

0.26 [0.23, 
0.28]

Sadeghi et al., 2017 0.14 [0.11, 0.17] 0.02 [0.00, 
0.04]

0.15 [0.13, 
0.18]

Schmidt et al., 2019 0.30 [0.27, 0.33] 0.11 [0.08, 
0.14]

0.31 [0.28, 
0.34]

Siedlecka et al., 2019, 
Experiment 1

0.33 [0.28, 0.38] 0.16 [0.12, 
0.20]

0.35 [0.30, 
0.40]

Siedlecka et al., 2019, 
Experiment 2

0.26 [0.22, 0.30] 0.09 [0.06, 
0.13]

0.27 [0.23, 
0.31]

Note. CI = confidence interval
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the zero-order Kendall’s τb correlation between confidence and memory performance was 
higher than the semi-partial correlation when the effect of drift rate on confidence was par-
tialled out, ts > 13.62, ps < 0.001, Cohen’s d > 2.20, indicating that basing confidence on drift 
rate could partly account for the positive relationship between confidence and performance. 
However, the zero-order correlation was lower than the semi-partial correlation in all exper-
iments when the effect of non-decision time on confidence was partialled out, ts > 2.44, 
ps < 0.05, Cohen’s d > 0.47 (see Table 5). Thus, non-decision time acted as a suppressor vari-
able in the relationship between confidence and performance: non-decision time explained 
part of the variance of confidence that was unrelated to actual memory performance, and 
removing the effect of non-decision time strengthened the correlation between confidence 
and performance (Smith et al., 1992).

Discussion

Results from six published experiments showed that retrospective confidence ratings were 
higher when response time in recognition test was shorter, replicating the effect of response 
time on confidence ratings in previous studies (Robinson et al., 1997; Siedlecka et al., 
2019). Furthermore, response time also negatively predicted memory performance in rec-
ognition test, indicating that response time was a reliable cue predicting actual performance 
(Anderson, 1981; Robinson et al., 1997; Siedlecka et al., 2019). However, there was still a 
significant effect of response time on confidence ratings when the effect of memory perfor-
mance was controlled, suggesting that relying on response time might make retrospective 
confidence unable to fully reflect the variation of actual performance across trials.

Consistent with our hypothesis, higher confidence ratings were associated with higher 
drift rate across trials in each of the six experiments. Drift rate indexes the speed of memory 
evidence accumulation during recognition test, and directly reflects the fluency of retrieving 
information from long-term memory (Ratcliff, 1978; Ratcliff & McKoon, 2008). Our find-
ings were in accordance with previous theoretical account about the utilization of retrieval 
fluency during retrospective confidence (Koriat et al., 2008; Koriat & Ackerman, 2010).

More importantly, there was also an overall negative effect of non-decision time on con-
fidence ratings across the six experiments, suggesting that retrospective confidence ratings 
depend on not only retrieval fluency, but also the speed of cognitive process unrelated to 
memory retrieval. However, in contrary to drift rate, non-decision time did not reliably 
influence confidence ratings in all of the six experiments. Furthermore, the effect size (ηp

2) 
was slightly higher for the overall effect of drift rate on confidence than the overall effect of 
non-decision time across the six experiments. It is possible that although the speed of both 
retrieval and non-decision process was reliably utilized during retrospective confidence, 
the extent of the reliance of confidence on non-decision process might be slightly smaller 
compared with the reliance on retrieval fluency.

When examining the effect of drift rate and non-decision time on confidence accuracy, we 
found that zero-order Kendall’s τb correlation between confidence and memory performance 
was higher than the semi-partial correlation when the effect of drift rate on confidence was 
partialled out, but lower than the semi-partial correlation when the effect of non-decision 
time on confidence was partialled out. These results supported our hypothesis that giving 
retrospective confidence ratings based on drift rate increases confidence accuracy, while the 
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reliance of confidence on non-decision time leads to inaccurate confidence ratings. Accord-
ing to the assumption of DDM, drift rate determines the tendency that memory evidence 
accumulates toward the correct response, and affects memory performance in recognition 
test (Ratcliff & McKoon, 2008). Thus, the contribution of drift rate to confidence should 
strengthen the relationship between confidence ratings and actual performance. On the other 
hand, non-decision time in DDM only affects the total response time but not memory per-
formance (Ratcliff & McKoon, 2008), and relying on non-decision time during confidence 
process makes confidence ratings deviate from actual performance in the test.

In brief, the current analysis on data from previous experiments indicated that retro-
spective confidence ratings are related to the speed of both retrieval and non-decision pro-
cess during recognition test. However, our analyses above were not able to indicate which 
non-decision process could affect retrospective confidence ratings. In the next two experi-
ments (1a and 1b), we specifically investigated whether the speed of stimulus perception, 
which is an important part of non-decision process during recognition (Ratcliff & McKoon, 
2008), could predict retrospective confidence ratings. One way to alter the speed of stimulus 
perception is to manipulate the ease of perceiving the stimuli in recognition test (Yang et 
al., 2018). Many previous studies indicate that changing the perceptual characteristics of 
stimuli, such as font size, font type and blurriness, can reliably affect the ease of perception 
(Diemand-Yauman et al., 2011; Geller & Peterson, 2021; Rosner et al., 2015; Yang et al., 
2018; Yue et al., 2013). Furthermore, ease of perception is closely related to people’s evalu-
ation of memory performance, and people often predict they will have higher performance 
in memory test when it is easier to perceive study items (Busey et al., 2000; Undorf et al., 
2017; Wang et al., 2020; Yang et al., 2018; Yue et al., 2013). In Experiments 1a and 1b, we 
manipulated the ease of perceiving the words presented in recognition test based on either 
blurriness or irregular font type (Diemand-Yauman et al., 2011; Rosner et al., 2015). We 
aimed to (1) replicate the effects of both drift rate and non-decision time on retrospective 
confidence ratings, and (2) investigate whether non-decision time mediated the effect of the 
ease of perception on confidence.

Experiments 1a and 1b

Method

Participants

The sample size in Experiments 1a and 1b was determined based on the summary-statistics-
based power analysis for multilevel model developed by Murayama et al., (2020). We aimed 
to replicate both the positive effect of drift rate and negative effect of non-decision time on 
retrospective confidence ratings. Because Murayama et al.’s method only receives param-
eter inputs from a 2-level rather than 3-level model, we combined data from all of the six 
published experiments, and built a 2-level (level 1: trial; level 2: participant) linear model 
in which confidence ratings were regressed on both drift rate and non-decision time. The 
estimated parameters were then input into the web app (https://koumurayama.shinyapps.
io/summary_statistics_based_power/) developed by Murayama et al., (2020). Furthermore, 
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the cluster size used in the power analysis was represented by the averaged trial number for 
each participant across all of the six experiments (141 trials).

Results from the power analysis revealed that when there were 200 trials for each partici-
pant (as in our experiments; see below), 26 participants were needed with a power of 0.80. 
We decided to use a slightly larger sample size because (1) the model for power analysis 
(2-level model) was different from that for data analysis across the six experiments (3-level 
model), and (2) the actual trial number for each participant in Experiments 1a and 1b might 
be lower than 200 after we removed trials with extreme response time (see the data analysis 
below).

We finally recruited 31 participants in Experiment 1a (19 female; age: M = 28.48 
years, SD = 6.67), and 31 participants in Experiment 1b (13 female; age: M = 33.97 years, 
SD = 11.02). All participants were recruited online via the Prolific website (https://prolific.
ac/). Data from another one participant in Experiment 1b were excluded due to memory 
performance lower than the chance level (0.5).

Participants signed informed consent prior to the experiment, and received monetary 
compensation (£4.5) and a bonus (up to £0.5, dependent on memory performance) after 
the experiment. All participants spoke English as the first language and reported normal 
or corrected-to-normal vision. All procedures were approved by the Ethics Committee at 
Beijing Normal University.

Materials

The experimental materials for Experiments 1a and 1b were 400 English words selected 
from the MRC Psycholinguistic Database (Coltheart, 1981). All words contained 4–8 letters 
and 1–3 syllables. The Kucera and Francis word frequency for all words was between 8 and 
90 (M = 32.38; SD = 20.83), and the ratings of familiarity (M = 537.66; SD = 39.72), concrete-
ness (M = 561.10; SD = 47.46) and imagability (M = 565.74; SD = 43.10) were between 450 
and 650. The words were randomly divided into two halves for each participant, in which 
200 words were used as study materials in the learning phase, with the other 200 words 
served as lures in the 2AFC recognition memory test.

Procedure

The procedure for the recognition memory task in Experiments 1a and 1b was similar to 
those in previous studies (Fleming et al., 2014; McCurdy et al., 2013; Palmer et al., 2014). 
The task contained four blocks, and in each block participants were first presented with 
50 words simultaneously on the screen (arranged in 10 rows and 5 columns) and asked 
to memorize as many words as possible (see Fig. 2a). All words were presented in a clear 
font. The exposure duration of the words was 30, 50, 70 or 90 s in the four blocks, and the 
order of the four durations was randomized across participants. When there were 10 s left 
of the learning phase, participants were notified by a countdown clock presented below the 
50 words. Following the learning phase in each block, participants completed 50 trials in 
the 2AFC recognition memory test (see Fig. 2b). After presenting the fixation for 500 ms, a 
learned word and a new word were simultaneously shown on the screen, and the positions 
of the two words were randomly determined in each trial. Participants needed to decide 
which word had been learned by pressing the number key 1 or 2. The chosen answer would 
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then be highlighted for 500 ms. Finally, participants were required to press a number key to 
indicate their confidence regarding answer correctness. The confidence scale ranged from 1 
(not confident at all) to 6 (extremely confident). The chosen number in the confidence rat-
ing scale would also be highlighted for 500 ms. There was no time pressure on recognition 
decision or confidence rating.

The 50 trials in the recognition test for each block of Experiments 1a and 1b were ran-
domly divided into easy-to-perceive or hard-to-perceive condition. In each trial of easy-
to-perceive condition for both experiments, the two words shown in the recognition test 
were presented in a clear 32-point Arial font. In each trial of hard-to-perceive condition 
for Experiment 1a, the two words were presented in a blurred 32-point Arial font. Blurred 
words were created by applying a Gaussian blur of 10 to each word using GNU Image 
Manipulation Program (GIMP) (Rosner et al., 2015). In each trial of hard-to-perceive con-
dition for Experiment 1b, the two words were presented in a clear 32-point Sans Forgetica 
font, which was designed to induce difficulty in the perception of words during reading (see 
Fig. 2c) (Geller & Peterson, 2021).

Fig. 2 (a) The learning phase in Experiments 1a and 1b. (b) The recognition test phase in Experiments 1a and 
1b. (c) Examples of words for easy-to-perceive (clear font) and hard-to-perceive condition (blurred font in 
Experiment 1a, and Sans Forgetica font in Experiment 1b)
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Data analysis

Data preparation. Before performing any data analysis, we excluded trials with response 
time that was shorter than 100 ms or differed by more than 3 standard deviations from the 
mean, as in our analysis on the six published experiments.

Effect of perceptual manipulation on performance, response time, mean confidence, 
and confidence accuracy. We first used paired-sample t tests to compare memory perfor-
mance (proportion of correctly answered trials), response time in recognition test, and mean 
confidence between easy- and hard-to-perceive condition separately in Experiments 1a and 
1b. Then we computed Kendall’s τb correlation as the measure of confidence accuracy sepa-
rately for each condition within each participant, and investigated the effect of perceptual 
manipulation on confidence accuracy.4

Effect of perceptual manipulation on DDM parameters. We fit DDM to data sepa-
rately in each condition for each participant (as in the data analysis for previous published 
experiments; see above), and extracted the posterior mean of boundary separation a, overall 
drift rate across trials µv, and overall non-decision time across trials µT. We then performed 
paired-sample t tests to examine the difference in a, µv and µT between easy- and hard-to-
perceive condition in Experiments 1a and 1b (we also built hierarchical Bayesian models 
to investigate the influence of perceptual manipulation on DDM parameters at trial level, 
which replicated the results from t tests; see Section S3 in the Supplemental Materials for 
details).

Relationship between performance, response time and confidence. Next, we com-
bined data from two experimental conditions, and built 2-level logistic and linear regression 
models (level 1: trial; level 2: participant) separately for each experiment to (1) regress 
confidence on response time, (2) regress confidence on performance, and (3) regress con-
fidence on both response time and performance. As in the data analysis for previous pub-
lished experiments, here we only focused on the within-participant effects of the predictor 
variables. We then added the main effect of experimental condition (0 = easy-to-perceive, 
1 = hard-to-perceive) and the interaction between condition and each predictor variable into 
the models, and explored whether the ease of perception could moderate the effects of the 
predictor variables.

Using drift rate and non-decision time to predict confidence. To replicate the effects 
of drift rate v and non-decision time Ter on retrospective confidence ratings in previous 
published experiments, we combined data from two experimental conditions and built a 
2-level linear model (level 1: trial; level 2: participant) separately for Experiments 1a and 
1b, in which trial-by-trial confidence rating was regressed on both v and Ter. Then we added 
the main effect of experimental condition and the interaction between condition and each 
of the two parameters into the model, and examined whether the ease of perception could 
moderate the effect of v and Ter on confidence.

Effects of drift rate and non-decision time on confidence accuracy. To replicate the 
effects of drift rate v and non-decision time Ter on confidence accuracy, we computed zero-
order Kendall’s τb correlation between confidence and performance, semi-partial Kendall’s 
τb correlation when the effect of v on confidence was partialled out, and semi-partial correla-
tion when the effect of Ter on confidence was partialled out separately for easy- and hard-

4  The Kendall’s τb correlation could not be computed in hard-to-perceive condition for one participant in 
Experiment 1b, because all of the trials were correctly answered in recognition test.
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to-perceive condition within each participant. Then for each experiment, we performed a 
2 (Correlation type: zero-order vs. semi-partial) × 2 (Condition: easy vs. hard-to-perceive) 
analysis of variance (ANOVA) on Kendall’s τb correlation to investigate whether the corre-
lation coefficient significantly changed when the effect of v was partialled out, and whether 
experimental condition interacted with the type of correlation. Similarly, we conducted a 
2 (Correlation type: zero-order vs. semi-partial) × 2 (Condition: easy vs. hard-to-perceive) 
ANOVA to compare the zero-order correlation and semi-partial correlation when the effect 
of Ter was partialled out.

Mediation effect of non-decision time on the relationship between the ease of per-
ception and confidence. To foreshadow, our results revealed that the ease of perception 
could reliably affect non-decision time Ter in recognition test. Thus, we finally examined 
whether non-decision time could mediate the effect of the ease of perception on retrospec-
tive confidence ratings at trial level. For each experiment, we constructed a multilevel medi-
ation model using the MLmed package in SPSS (Hayes & Rockwood, 2020). The drift rate 
v for each trial was added into the model as covariate, and we also added all of the random 
intercepts and random slopes. MLmed could divide the overall mediation effect into within-
participant and between-participant effects, and we only focused on the within-participant 
mediation effect.

Fig. 3 Memory performance, response time (in seconds) and mean confidence for easy- and hard-to-per-
ceive condition in Experiments 1a and 1b. Error bars represent within-participant 95% confidence interval 
(Cousineau, 2005)
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Results

Effects of perceptual manipulation on performance, response time, mean 
confidence, and confidence accuracy

Memory performance in recognition test did not differ between easy- and hard-to-perceive 
condition in both Experiments 1a and 1b, Exp 1a: t(30) = 0.30, p = .766, Cohen’s d = 0.05; 
Exp 1b: t(30) = 1.27, p = .215, Cohen’s d = 0.23. While response time in recognition test was 
longer for hard- than easy-to-perceive condition, this difference was not statistically detect-
able in both experiments (although the effect was marginally significant in Experiment 
1a), Exp 1a: t(30) = 2.04, p = .051, Cohen’s d = 0.37; Exp 1b: t(30) = 0.23, p = .824, Cohen’s 
d = 0.04. Furthermore, mean confidence ratings did not reliably differ between easy- and 
hard-to-perceive condition in both experiments, although confidence in easy-to-perceive 
condition was marginally higher in Experiment 1b, Exp 1a: t(30) = 1.18, p = .249, Cohen’s 
d = 0.21; Exp 1b: t(30) = 1.98, p = .057, Cohen’s d = 0.36 (see Fig. 3).

We then computed Kendall’s τb correlation between confidence and performance as the 
measure of confidence accuracy, and examined the effect of perceptual manipulation on 
confidence accuracy. Our results revealed that there was no reliable difference in Kendall’s 
τb correlation between easy- and hard-to-perceive condition, Exp 1a: t(30) = 0.78, p = .444, 
Cohen’s d = 0.14; Exp 1b: t(29) = 1.18, p = .247, Cohen’s d = 0.25. (see Table 6).

Effect of perceptual manipulation on DDM parameters

We fit DDM separately to each experimental condition within each participant, and exam-
ined the effect of perceptual manipulation on DDM parameters at participant level. In both 
experiments, boundary separation a did not differ between easy- and hard-to-perceive 
condition, Exp 1a: t(30) = 1.49, p = .147, Cohen’s d = 0.27; Exp 1b: t(30) = 1.05, p = .304, 
Cohen’s d = 0.19. Similarly, the overall drift rate across trials µv did not differ between the 
two conditions, Exp 1a: t(30) = 0.43, p = .668, Cohen’s d = 0.08; Exp 1b: t(30) = 0.68, p = .501, 
Cohen’s d = 0.12. However, the overall non-decision time across trials µT was higher for 
hard- than easy-to-perceive condition, and this difference was statistically detectable, Exp 
1a: t(30) = 3.52, p = .001, Cohen’s d = 0.63; Exp 1b: t(30) = 2.80, p = .009, Cohen’s d = 0.50 
(see Fig. 4). Overall, these findings reflect that the manipulation of the ease of perception 

Table 6 Kendall’s τb correlation between confidence and performance in Experiments 1a and 1b
Conditions Zero-order Semi-

partial 
(partialling 
out v)

Semi-
partial 
(partialling 
out Ter)

Mτb 95% CI Mτb 95% CI Mτb 95% CI
Experiment 1a
Easy-to-perceive 0.32 [0.27, 0.37] 0.15 [0.11, 0.19] 0.33 [0.29, 0.38]
Hard-to-perceive 0.30 [0.26,0.35] 0.14 [0.11, 0.18] 0.31 [0.27, 0.35]
Experiment 1b
Easy-to-perceive 0.24 [0.18, 0.30] 0.08 [0.04, 0.12] 0.25 [0.19, 0.32]
Hard-to-perceive 0.22 [0.16, 0.28] 0.07 [0.03, 0.12] 0.23 [0.17, 0.29]
Note. CI = confidence interval
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was successful. That is, difficulty in perceiving the stimuli affected non-decision time but 
not drift rate.

Relationships among response time, performance and confidence

When data from two experimental conditions were combined together, we found that higher 
recognition memory performance was associated with shorter response time in recogni-
tion test across trials in both Experiments 1a and 1b, Exp 1a: b = -0.35, t = 5.19, p < .001, 
ηp

2 = 0.50; Exp 1b: b = -0.28, t = 4.33, p < .001, ηp
2 = 0.44. Furthermore, retrospective con-

fidence ratings were higher when response time was shorter, Exp 1a: b = -0.55, t = 6.12, 
p < .001, ηp

2 = 0.58; Exp 1b: b = -0.56, t = 5.33, p < .001, ηp
2 = 0.50, or when memory perfor-

mance was higher, Exp 1a: b = 1.38, t = 10.60, p < .001, ηp
2 = 0.79; Exp 1b: b = 1.16, t = 7.32, 

p < .001, ηp
2 = 0.67. When regressing confidence ratings on response time and memory 

performance at the same time, we found that both response time and performance could 
significantly predict confidence, Exp 1a: bresponse time = -0.45, t = 6.06, p < .001, ηp

2 = 0.58; 
bperformance = 1.20, t = 9.70, p < .001, ηp

2 = 0.76; Exp 1b: bresponse time = -0.50, t = 5.36, p < .001, 
ηp

2 = 0.50; bperformance = 0.91, t = 6.38, p < .001, ηp
2 = 0.62.

We then investigated whether experimental condition (easy- vs. hard-to-perceive) could 
moderate the effect of each predictor variable above. None of the moderation effects reached 
statistical significance, |b| < 0.11, ts < 1.85, ps > 0.08, ηp

2 < 0.40.

Fig. 4 Boundary separation (a), overall drift rate (µv) and overall non-decision time (µT) for easy- and hard-
to-perceive condition in Experiments 1a and 1b. Error bars represent within-participant 95% confidence 
interval (Cousineau, 2005)
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Effects of drift rate and non-decision time on confidence

When data from two experimental conditions were combined together, our results revealed 
that higher confidence was associated with higher drift rate v in both Experiments 1a and 1b, 
Exp 1a: b = 1.65, t = 4.91, p < .001, ηp

2 = 0.54; Exp 1b: b = 2.01, t = 5.25, p < .001, ηp
2 = 0.61. 

Furthermore, confidence ratings were also higher when non-decision time Ter was shorter, 
Exp 1a: b = -1.39, t = 2.08, p = .049, ηp

2 = 0.16; Exp 1b: b = -2.84, t = 3.55, p = .003, ηp
2 = 0.46.

We then investigated whether experimental condition could moderate the effect of drift 
rate and non-decision time on confidence. Only in Experiment 1b did our results show 
a significant moderation effect of condition on the relationship between confidence and 
non-decision time, suggesting the effect of non-decision time on confidence was smaller 
(less negative) in hard-to-perceive condition, b = 3.68, t = 2.69, p = .035, ηp

2 = 0.54. To fur-
ther explore whether non-decision time could predict confidence in both easy- and hard-
to-perceive conditions of Experiment 1b, we regressed confidence on both drift rate and 
non-decision time separately for easy- and hard-to-perceive condition. Results indicated 
that the effect of non-decision time on confidence was statistically significant in both condi-
tions, bs < -8.64, ts > 2.98, ps < 0.05, ηp

2 > 0.55. None of the other moderation effects reached 
statistical significance, |b| < 0.63, ts < 1.71, ps > 0.12, ηp

2 < 0.28.

Effects of drift rate and non-decision time on confidence accuracy

To investigate whether the reliance of drift rate v affected confidence accuracy, we performed 
2 (Correlation type: zero-order vs. semi-partial) × 2 (Condition: easy vs. hard-to-perceive) 
ANOVA on Kendall’s τb correlation to compare zero-order correlation and semi-partial cor-
relation when the effect of v on confidence was partialled out, and examine whether experi-
mental condition interacted with the type of correlation. Results from both Experiments 
1a and 1b revealed that the main effect of correlation type was statistically significant, and 
the correlation coefficient was lower when the effect of v was partialled out, Exp 1a: F(1, 
30) = 168.75, p < .001, ηp

2 = 0.85; Exp 1b: F(1, 29) = 79,38, p < .001, ηp
2 = 0.73. There was 

no main effect of experimental condition, or the interaction between correlation type and 
condition, F < 3.23, p > .08, ηp

2 < 0.11 (see Table 6).
Similarly, we conducted 2 (Correlation type: zero-order vs. semi-partial) × 2 (Condi-

tion: easy vs. hard-to-perceive) ANOVA to examine the effect of non-decision time Ter on 
confidence accuracy. We found that zero-order Kendall’s τb correlation was reliably lower 
than the semi-partial correlation when the effect of Ter on confidence was partialled out, Exp 
1a: F(1, 30) = 10.20, p = .003, ηp

2 = 0.25; Exp 1b: F(1, 29) = 18.15, p < .001, ηp
2 = 0.39. The 

main effect of experiment condition and the interaction were not statistically detectable in 
any experiment, F < 3.32, p > .07, ηp

2 < 0.11 (see Table 6). Thus, our results replicated those 
from the analysis on previous published experiments: the reliance of confidence on drift 
rate increased confidence accuracy, while basing confidence on non-decision time decreased 
confidence accuracy.
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Mediating role of non-decision time in the relationship between the ease of 
perception and confidence

Finally, we examined whether non-decision time Ter could mediate the effect of the ease of 
perception on retrospective confidence ratings. In both Experiments 1a and 1b, there was a 
statistically detectable indirect effect of the ease of perception on confidence through non-
decision time, Exp 1a: b = -0.14, Z = 2.19, p = .029; Exp 1b: b = -0.20, Z = 2.34, p = .020. 
These results indicated that non-decision time reliably contributed to the effect of the ease 
of perception on confidence: difficulty in perceiving the stimuli could lead to long non-
decision time, resulting in low confidence. However, there was also a trend for the positive 
direct effect of the ease of perception on confidence. This direct effect was close to sig-
nificance in Experiment 1a, b = 0.16, t = 1.90, p = .072, ηp

2 = 0.15, and statistically significant 
in Experiment 1b, b = 0.19, t = 2.44, p = .025, ηp

2 = 0.25 (see Fig. 5). Thus, there might be 
another path for the effect of the ease of perception on confidence, in which more difficulty 
in perceiving the stimuli was associated with higher confidence.

Fig. 5 The mediation effect of non-decision time Ter on the relationship between experimental condition and 
retrospective confidence ratings in Experiments 1a (a) and 1b (b). Standard errors are reported in parentheses
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Discussion

Experiments 1a and 1b replicated the results from our analysis on previous published exper-
iments. Specifically, Experiments 1a and 1b showed that retrospective confidence ratings 
were higher when response time in recognition test was shorter. Although response time 
could reliably predict memory performance in recognition test, the reliance of confidence 
on response time went beyond the effect of memory performance. In addition, higher con-
fidence ratings were associated with higher drift rate and shorter non-decision time across 
trials. We also found that basing confidence on drift rate increased confidence accuracy, 
while giving confidence ratings based on non-decision time negatively affected confidence 
accuracy.

Furthermore, Experiments 1a and 1b implemented different manipulations of the ease 
of perception for the words presented in recognition test, and revealed that the ease of per-
ceiving the words significantly affected non-decision time. Participants took longer time 
to recognize the content of words when perception of words was more difficult, leading to 
longer overall non-decision time (Yang et al., 2018). However, the boundary separation and 
drift rate did not reliably differ between easy- and hard-to-perceive condition, suggesting 
the ease of perception did not affect the retrieval process during recognition test.

Although results in the two experiments revealed a statistically significant effect of ease 
of perception on non-decision time, the overall response time in recognition test did not 
reliably differ between easy- and hard-to-perceive conditions. One possibility is that overall 
response time might not be sensitive to perceptual manipulation because it might also be 
influenced by other cognitive process. Previous studies have shown that while font size 
of stimuli affects the response time in continuous identification task which mainly mea-
sures the speed of perception, self-paced study time did not differ across different font sizes 
because study time also depends heavily on conceptual processing (Chang & Brainerd, 
2022; Mueller et al., 2014; Yang et al., 2018). Similarly, overall response time in recogni-
tion test is closely related to the time required for memory retrieval, and might not reliably 
reflect the difference in ease of perception across experimental conditions. Furthermore, it 
is also possible that participant might limit the maximum amount of time they were will-
ing to spend on each trial during recognition, or adjusted their decision boundary as time 
went on (Ackerman, 2014; Ratcliff et al., 2016). Future studies should try to explore these 
possibilities.

In the two experiments, the influence of perceptual manipulation on mean confidence 
did not reach statistical significance, even when non-decision time was reliably affected by 
the ease of perception. This result was different from those in some previous studies, which 
reveal that increasing the ease of perception often leads to prediction of higher overall per-
formance in memory test (e.g., Busey et al., 2000; Undorf et al., 2017; Yang et al., 2018; Yue 
et al., 2013; but see Sungkhasettee et al., 2011; Thompson et al., 2013 for different results). 
Further mediation analysis indicated that the relationship between ease of perception and 
retrospective confidence ratings in Experiments 1a and 1b was complicated, and there might 
be two opposite effects of the ease of perception on confidence ratings. One is the indirect 
effect through non-decision time: difficulty in perceiving the stimuli increased non-decision 
time, which was utilized as one of the cues during retrospective confidence process, and led 
to low confidence ratings. This result is consistent with previous studies suggesting that high 
level of difficulty in stimulus identification reduces the speed of perceptual process, which 
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then makes people predict they will have low memory performance (Undorf et al., 2017; 
Wang et al., 2020; Yang et al., 2018).

The other effect of perceptual manipulation on retrospective confidence revealed in the 
mediation analysis was the direct effect in the opposite direction, in which difficulty in 
stimulus perception was related to high confidence. One possibility is that the amount of 
effort required in recognition test might affect retrospective confidence ratings. For exam-
ple, in the study by Turner et al., (2021), participants gave higher retrospective confidence 
in perceptual decision making task when they invested more motor effort in reporting the 
decision. Turner et al. suggest that high level of effort invested into the decision might be 
interpreted post-hoc as a signal that the decision is likely to be correct. Similarly, more dif-
ficulty in stimulus perception requires more effort for recognizing the words, which might 
then be interpreted as higher probability of choosing the correct answer.

General discussion

Previous studies consistently showed that higher retrospective confidence ratings were 
associated with shorter response time in memory test (Kelley & Lindsay, 1993; Koriat & 
Ackerman, 2010; Robinson et al., 1997; Siedlecka et al., 2019). Researchers often inter-
pret response time as a measure of retrieval fluency, which is an important cue utilized in 
retrospective confidence process (Koriat et al., 2008; Koriat & Ackerman, 2010; Robin-
son et al., 1997). However, DDM, which is a widely applied model concerning decision 
making, indicates that response time in recognition memory test contains both a decision 
(i.e., retrieval) and a non-decision component, and does not solely reflect retrieval fluency 
(Ratcliff & McKoon, 2008). Few previous studies have investigated whether retrospective 
confidence is affected by the speed of both retrieval and non-decision process in recognition 
test. Thus, the current study aimed to fill this gap.

Based on the analysis of data from six published experiments, our results revealed that 
higher retrospective confidence ratings were associated with both higher speed of accumu-
lating memory evidence (i.e., drift rate) and shorter non-decision time in recognition test. 
Furthermore, the reliance of confidence on drift rate strengthened the positive relationship 
between confidence and memory performance, while the reliance of confidence on non-
decision time negatively affected confidence accuracy. We then manipulated the ease of 
perceiving the stimuli in Experiments 1a and 1b to directly influence non-decision time in 
recognition test. Results indicated that more difficulty in stimulus perception led to longer 
non-decision time, which could then result in lower retrospective confidence ratings. How-
ever, there might also be another opposite effect of the ease of perception on retrospective 
confidence, in which difficulty in stimulus perception increased confidence ratings.

Consistent with our hypothesis, retrospective confidence ratings in recognition test were 
positively related to drift rate across trials. In addition, the reliance of confidence on drift 
rate could partly account for the positive relationship between confidence and memory per-
formance. According to DDM, drift rate directly reflects the speed of retrieving information 
from memory storage in recognition test, and affects both the time required for memory 
retrieval and actual memory performance (Ratcliff, 1978; Ratcliff & McKoon, 2008). Thus, 
compared with the total response time, drift rate should be a better measure of retrieval flu-
ency in recognition test. Our results supported previous theoretical accounts concerning ret-
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rospective confidence ratings, which suggest that retrieval fluency in memory test is one of 
the key factors affecting confidence process (Koriat et al., 2008; Koriat & Ackerman, 2010).

We also observed that retrospective confidence ratings were affected by non-decision 
time in recognition test. Furthermore, Experiments 1a and 1b revealed that the ease of per-
ception could affect confidence ratings through the change of non-decision time (although 
there might be another direct effect on confidence in the opposite direction). These results 
suggested that besides retrieval fluency, the speed of non-decision process might also be an 
important cue utilized during confidence process. In addition, our data analysis indicated that 
the reliance of confidence on non-decision time could negatively affect confidence accuracy. 
This result is consistent with the assumption of DDM: non-decision time only influences 
the total amount of response time but not memory performance (Ratcliff & McKoon, 2008). 
Thus, basing retrospective confidence on non-decision time would make confidence ratings 
unable to appropriately reflect the variation of memory performance across trials.

Although our results indicated the influence of non-decision time on retrospective confi-
dence ratings, there is no clear conclusion about why non-decision time is utilized as a cue 
during confidence process. Experiments 1a and 1b suggest that the effect of non-decision 
time on retrospective confidence ratings may be due to the processing experience obtained 
from non-decision process such as perception: participants could experience the variation 
in the ease of perception across trials, which might lead to change in the subjective feeling 
of knowing the answer, and then affect retrospective evaluation of memory performance 
(cf. Koriat et al., 2004, 2008). However, there is another possibility that non-decision time 
may affect confidence due to people’ prior beliefs about memory process (Mueller et al., 
2014; Mueller & Dunlosky, 2017). For example, participants might hold a belief that long 
response time is more likely to be associated with incorrect response in recognition test. 
Based on this belief, participants might give lower confidence when they observed longer 
response time during recognition, regardless of whether the increasing of response time 
came from retrieval or non-decision process. Future studies should try to examine the role 
of prior beliefs in the effect of non-decision time on confidence ratings.

The current study illustrated the advantage of decomposing response time in recognition 
test based on DDM. For example, when investigating the influence of the ease of perception 
on metamemory, previous studies often look at the change in total response time to validate 
the perceptual manipulation (Thompson et al., 2013; Yang et al., 2018). However, in our 
Experiments 1a and 1b, while the effect of perceptual manipulation on total response time 
was not statistically detectable, non-decision time in DDM reliably differ between easy- and 
hard-to-perceive condition. These results suggest that compared with total response time, 
non-decision time is more sensitive to (and should more directly reflect) the manipulations 
of the ease of perception. In addition, decomposing the response time based on DDM can 
also reflect which specific process (retrieval or non-decision process) in recognition test is 
affected by experimental manipulations (Ratcliff & McKoon, 2008). We suggest that future 
studies should use DDM to decompose response time and to directly quantify the effect of 
retrieval fluency and non-decision time on confidence ratings.

There have been a few studies exploring the potential effect of the ease of perception on 
retrospective confidence ratings (Busey et al., 2000; Thompson et al., 2013). For example, 
Busey et al., (2000) revealed that when face pictures were used as materials in recogni-
tion test, lower luminance of pictures were associated with lower retrospective confidence. 
In contrast, Thompson et al., (2013) showed that while difficulty in perceiving the words 

675



X. Hu et al.

1 3

(induced by irregular font style) increased response time in reasoning tasks, retrospective 
confidence was not affected by the ease of perception. The main difference between the 
current study and previous studies is that previous studies did not examine whether non-
decision time mediated the influence of the ease of perception on confidence, and did not 
reveal two opposite effects of perceptual manipulation as in our Experiments 1a and 1b. 
Future studies should further investigate whether the ease of perceiving the stimuli affects 
confidence with different materials and manipulations, and explore the role of non-decision 
time in this effect.

The current study used DDM to examine how participants monitored and evaluated their 
memory performance based on cues (retrieval fluency and non-decision time) obtained 
from recognition test. Future studies could consider using DDM to investigate the cognitive 
mechanisms underlying metamemory control process. For example, previous theories have 
provided different assumptions regarding how people decide when to stop their study during 
self-regulated learning. The Discrepancy Reduction Model suggests that people set a con-
stant criterion of learning, and they continue to study until the perceived degree of learning 
exceeds the criterion (Nelson & Narens, 1990). Thus, more difficult items generally require 
longer study time. In contrast, A Region of Proximal Learning Model indicates that people’s 
learning criterion relies on their perseverance, and they spend more time studying easier 
unknown items than the most difficult ones (Metcalfe & Kornell, 2005). A third theory, the 
Diminishing Criterion Model, assumes that learning criterion reduces with the increase of 
study time (Ackerman, 2014). In the framework of DDM, the differences between the three 
theories above may be represented by the setting of decision boundary: the boundary for 
the decision about when to stop learning should be fixed in Discrepancy Reduction Model, 
while the decision boundary may depend on item difficulty according to A Region of Proxi-
mal Learning Model. On the other hand, the Diminishing Criterion Model may be related 
to collapse boundary DDM, which suggests the decision boundaries for different choices 
collapse over time (Ratcliff et al., 2016). Future studies should try to use quantitative model 
comparison based on DDM to examine which theory best fits people’s self-regulated learn-
ing behavior.

In order to investigate the effect of both drift rate v and non-decision time Ter on retro-
spective confidence, the current study estimated the value of v and Ter separately in each 
trial, and regressed trial-by-trial confidence ratings on both v and Ter at the same time. 
Thus, the reliability of the results in this study depends on whether the effect of single-trial 
v and Ter on confidence could be independently estimated in the model. To address this 
question, we first combined data from all of the eight experiments (including six published 
experiments and Experiments 1a-1b) to examine the relationship between single-trial esti-
mation of v and Ter. Results from multilevel linear regression model revealed that v could 
be negatively predicted by Ter within each participant (and vice versa), bs < -0.01, ts > 3.53, 
ps < 0.005, ηp

2 > 0.63, suggesting the estimated values of single-trial v and Ter were cor-
related. We then performed a data simulation (see Section S4 in Supplemental Materials), 
which indicated that there tended to be a small-to-moderate negative correlation between 
the estimated values of single-trial v and Ter when the true values of the two parameters did 
not correlate with each other. This result suggests that the estimation of single-trial v and 
Ter might not be fully independent. However, further analysis showed that the overall effect 
of v and Ter on confidence ratings could be successfully recovered in data simulation. Thus, 
although we need to be cautious when interpreting single-trial estimated value of v and Ter, 
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the overall positive effect of v and negative effect of Ter on confidence ratings found in the 
current study should be reliable.

In the current study, we only examined the effect of the ease of perception on non-deci-
sion time. Other factors, such as familiarity of words (Hanczakowski, Pasek, et al., 2013; 
Kelley & Lindsay, 1993), could also affect the time required for perceiving the words. In 
addition, according to DDM, non-decision time contains not only the perception of stimuli, 
but also the execution of response (Ratcliff & McKoon, 2008). Thus, the ease of motoric 
response may also affect non-decision time in recognition test (Susser et al., 2017; Susser & 
Mulligan, 2015). Furthermore, motoric response speed has been shown to affect retrospec-
tive confidence in perceptual decision tasks (Palser et al., 2018; Patel et al., 2012). Future 
studies should explore whether familiarity and motoric response can affect retrospective 
confidence ratings in recognition test through non-decision time.

Another limitation of the current study is that we only examined the effect of drift rate 
and non-decision time on retrospective confidence in 2-choice recognition test, but not in 
other test formats such as recall test or multiple-choice test with more than 2 options (Nel-
son & Narens, 1990; Robinson et al., 1997). However, DDM can only be applied to 2-choice 
tasks, and is not suitable for more complicated test format (Ratcliff & McKoon, 2008). 
Future studies should try to decompose the response time in multiple-choice and recall test 
based on other computational models (such as the linear ballistic accumulator model for 
multiple-choice test; see Brown & Heathcote 2008), and investigate whether drift rate and 
non-decision time could affect retrospective confidence ratings.

Conclusions

Retrospective confidence ratings in recognition test are affected by both drift rate which 
represents retrieval fluency, and non-decision time which reflects the required time for 
cognitive process other than memory retrieval. Furthermore, the reliance of confidence on 
drift rate could partly account for the positive relationship between confidence and memory 
performance, while basing confidence on non-decision time negatively affects confidence 
accuracy.
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